Differential and shared genetic effects on kidney function between diabetic and non-diabetic individuals

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

  • Fulltext

    Final published version, 5.55 MB, PDF document

  • Thomas W. Winkler
  • Humaira Rasheed
  • Alexander Teumer
  • Mathias Gorski
  • Bryce X Rowan
  • Kira J Stanzick
  • Laurent F Thomas
  • Adrienne Tin
  • Anselm Hoppmann
  • Audrey Y Chu
  • Bamidele Tayo
  • Chris H L Thio
  • Daniele Cusi
  • Jin-Fang Chai
  • Karsten B Sieber
  • Katrin Horn
  • Man Li
  • Markus Scholz
  • Massimiliano Cocca
  • Matthias Wuttke
  • Peter J van der Most
  • Qiong Yang
  • Sahar Ghasemi
  • Teresa Nutile
  • Yong Li
  • Giulia Pontali
  • Felix Günther
  • Abbas Dehghan
  • Adolfo Correa
  • Afshin Parsa
  • Agnese Feresin
  • Aiko P J de Vries
  • Alan B Zonderman
  • Albert V Smith
  • Albertine J Oldehinkel
  • Alessandro De Grandi
  • Alexander R Rosenkranz
  • Andre Franke
  • Andrej Teren
  • Andres Metspalu
  • Andrew A Hicks
  • Andrew P Morris
  • Anke Tönjes
  • Anna Morgan
  • Anna I Podgornaia
  • Kaare Christensen
  • Lars Lind
  • Peter Kovacs
  • Rossing, Peter
  • Loos, Ruth
  • LifeLines Cohort Study

Reduced glomerular filtration rate (GFR) can progress to kidney failure. Risk factors include genetics and diabetes mellitus (DM), but little is known about their interaction. We conducted genome-wide association meta-analyses for estimated GFR based on serum creatinine (eGFR), separately for individuals with or without DM (nDM = 178,691, nnoDM = 1,296,113). Our genome-wide searches identified (i) seven eGFR loci with significant DM/noDM-difference, (ii) four additional novel loci with suggestive difference and (iii) 28 further novel loci (including CUBN) by allowing for potential difference. GWAS on eGFR among DM individuals identified 2 known and 27 potentially responsible loci for diabetic kidney disease. Gene prioritization highlighted 18 genes that may inform reno-protective drug development. We highlight the existence of DM-only and noDM-only effects, which can inform about the target group, if respective genes are advanced as drug targets. Largely shared effects suggest that most drug interventions to alter eGFR should be effective in DM and noDM.

Original languageEnglish
JournalCommunications Biology
Volume5
Pages (from-to)580
Number of pages20
ISSN2399-3642
DOIs
Publication statusPublished - 2022

Bibliographical note

© 2022. The Author(s).

    Research areas

  • Creatinine, Diabetes Mellitus, Diabetic Nephropathies/genetics, Genome-Wide Association Study, Glomerular Filtration Rate/genetics, Humans, Kidney

ID: 311338757