The Comparative Methylome and Transcriptome After Change of Direction Compared to Straight Line Running Exercise in Human Skeletal Muscle

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

The Comparative Methylome and Transcriptome After Change of Direction Compared to Straight Line Running Exercise in Human Skeletal Muscle. / Maasar, Mohd Firdaus; Turner, Daniel C.; Gorski, Piotr P.; Seaborne, Robert A.; Strauss, Juliette A.; Shepherd, Sam O.; Cocks, Matt; Pillon, Nicolas J.; Zierath, Juleen R.; Hulton, Andrew T.; Drust, Barry; Sharples, Adam P.

In: Frontiers in Physiology, Vol. 12, 619447, 2021.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Maasar, MF, Turner, DC, Gorski, PP, Seaborne, RA, Strauss, JA, Shepherd, SO, Cocks, M, Pillon, NJ, Zierath, JR, Hulton, AT, Drust, B & Sharples, AP 2021, 'The Comparative Methylome and Transcriptome After Change of Direction Compared to Straight Line Running Exercise in Human Skeletal Muscle', Frontiers in Physiology, vol. 12, 619447. https://doi.org/10.3389/fphys.2021.619447

APA

Maasar, M. F., Turner, D. C., Gorski, P. P., Seaborne, R. A., Strauss, J. A., Shepherd, S. O., Cocks, M., Pillon, N. J., Zierath, J. R., Hulton, A. T., Drust, B., & Sharples, A. P. (2021). The Comparative Methylome and Transcriptome After Change of Direction Compared to Straight Line Running Exercise in Human Skeletal Muscle. Frontiers in Physiology, 12, [619447]. https://doi.org/10.3389/fphys.2021.619447

Vancouver

Maasar MF, Turner DC, Gorski PP, Seaborne RA, Strauss JA, Shepherd SO et al. The Comparative Methylome and Transcriptome After Change of Direction Compared to Straight Line Running Exercise in Human Skeletal Muscle. Frontiers in Physiology. 2021;12. 619447. https://doi.org/10.3389/fphys.2021.619447

Author

Maasar, Mohd Firdaus ; Turner, Daniel C. ; Gorski, Piotr P. ; Seaborne, Robert A. ; Strauss, Juliette A. ; Shepherd, Sam O. ; Cocks, Matt ; Pillon, Nicolas J. ; Zierath, Juleen R. ; Hulton, Andrew T. ; Drust, Barry ; Sharples, Adam P. / The Comparative Methylome and Transcriptome After Change of Direction Compared to Straight Line Running Exercise in Human Skeletal Muscle. In: Frontiers in Physiology. 2021 ; Vol. 12.

Bibtex

@article{19fc8fe6eef8468c9f65f8f08a1160dd,
title = "The Comparative Methylome and Transcriptome After Change of Direction Compared to Straight Line Running Exercise in Human Skeletal Muscle",
abstract = "The methylome and transcriptome signatures following exercise that are physiologically and metabolically relevant to sporting contexts such as team sports or health prescription scenarios (e.g., high intensity interval training/HIIT) has not been investigated. To explore this, we performed two different sport/exercise relevant high-intensity running protocols in five male sport team members using a repeated measures design of: (1) change of direction (COD) versus; (2) straight line (ST) running exercise with a wash-out period of at least 2 weeks between trials. Skeletal muscle biopsies collected from the vastus lateralis 30 min and 24 h post exercise, were assayed using 850K methylation arrays and a comparative analysis with recent (subject-unmatched) sprint and acute aerobic exercise meta-analysis transcriptomes was performed. Despite COD and ST exercise being matched for classically defined intensity measures (speed × distance and number of accelerations/decelerations), COD exercise elicited greater movement (GPS-Playerload), physiological (HR), metabolic (lactate) as well as central and peripheral (differential RPE) exertion measures compared with ST exercise, suggesting COD exercise evoked a higher exercise intensity. The exercise response alone across both conditions evoked extensive alterations in the methylome 30 min and 24 h post exercise, particularly in MAPK, AMPK and axon guidance pathways. COD evoked a considerably greater hypomethylated signature across the genome compared with ST exercise, particularly at 30 min post exercise, enriched in: Protein binding, MAPK, AMPK, insulin, and axon guidance pathways. Comparative methylome analysis with sprint running transcriptomes identified considerable overlap, with 49% of genes that were altered at the expression level also differentially methylated after COD exercise. After differential methylated region analysis, we observed that VEGFA and its downstream nuclear transcription factor, NR4A1 had enriched hypomethylation within their promoter regions. VEGFA and NR4A1 were also significantly upregulated in the sprint transcriptome and meta-analysis of exercise transcriptomes. We also confirmed increased gene expression of VEGFA, and considerably larger increases in the expression of canonical metabolic genes PPARGC1A (that encodes PGC1-α) and NR4A3 in COD vs. ST exercise. Overall, we demonstrate that increased physiological/metabolic load via COD exercise in human skeletal muscle evokes considerable epigenetic modifications that are associated with changes in expression of genes responsible for adaptation to exercise.",
keywords = "AMPK, change of direction, DNA methylation, MAPK, NR4A1 (Nur77), NR4A3, PGC1 alpha, VEGF",
author = "Maasar, {Mohd Firdaus} and Turner, {Daniel C.} and Gorski, {Piotr P.} and Seaborne, {Robert A.} and Strauss, {Juliette A.} and Shepherd, {Sam O.} and Matt Cocks and Pillon, {Nicolas J.} and Zierath, {Juleen R.} and Hulton, {Andrew T.} and Barry Drust and Sharples, {Adam P.}",
year = "2021",
doi = "10.3389/fphys.2021.619447",
language = "English",
volume = "12",
journal = "Frontiers in Physiology",
issn = "1664-042X",
publisher = "Frontiers Media S.A.",

}

RIS

TY - JOUR

T1 - The Comparative Methylome and Transcriptome After Change of Direction Compared to Straight Line Running Exercise in Human Skeletal Muscle

AU - Maasar, Mohd Firdaus

AU - Turner, Daniel C.

AU - Gorski, Piotr P.

AU - Seaborne, Robert A.

AU - Strauss, Juliette A.

AU - Shepherd, Sam O.

AU - Cocks, Matt

AU - Pillon, Nicolas J.

AU - Zierath, Juleen R.

AU - Hulton, Andrew T.

AU - Drust, Barry

AU - Sharples, Adam P.

PY - 2021

Y1 - 2021

N2 - The methylome and transcriptome signatures following exercise that are physiologically and metabolically relevant to sporting contexts such as team sports or health prescription scenarios (e.g., high intensity interval training/HIIT) has not been investigated. To explore this, we performed two different sport/exercise relevant high-intensity running protocols in five male sport team members using a repeated measures design of: (1) change of direction (COD) versus; (2) straight line (ST) running exercise with a wash-out period of at least 2 weeks between trials. Skeletal muscle biopsies collected from the vastus lateralis 30 min and 24 h post exercise, were assayed using 850K methylation arrays and a comparative analysis with recent (subject-unmatched) sprint and acute aerobic exercise meta-analysis transcriptomes was performed. Despite COD and ST exercise being matched for classically defined intensity measures (speed × distance and number of accelerations/decelerations), COD exercise elicited greater movement (GPS-Playerload), physiological (HR), metabolic (lactate) as well as central and peripheral (differential RPE) exertion measures compared with ST exercise, suggesting COD exercise evoked a higher exercise intensity. The exercise response alone across both conditions evoked extensive alterations in the methylome 30 min and 24 h post exercise, particularly in MAPK, AMPK and axon guidance pathways. COD evoked a considerably greater hypomethylated signature across the genome compared with ST exercise, particularly at 30 min post exercise, enriched in: Protein binding, MAPK, AMPK, insulin, and axon guidance pathways. Comparative methylome analysis with sprint running transcriptomes identified considerable overlap, with 49% of genes that were altered at the expression level also differentially methylated after COD exercise. After differential methylated region analysis, we observed that VEGFA and its downstream nuclear transcription factor, NR4A1 had enriched hypomethylation within their promoter regions. VEGFA and NR4A1 were also significantly upregulated in the sprint transcriptome and meta-analysis of exercise transcriptomes. We also confirmed increased gene expression of VEGFA, and considerably larger increases in the expression of canonical metabolic genes PPARGC1A (that encodes PGC1-α) and NR4A3 in COD vs. ST exercise. Overall, we demonstrate that increased physiological/metabolic load via COD exercise in human skeletal muscle evokes considerable epigenetic modifications that are associated with changes in expression of genes responsible for adaptation to exercise.

AB - The methylome and transcriptome signatures following exercise that are physiologically and metabolically relevant to sporting contexts such as team sports or health prescription scenarios (e.g., high intensity interval training/HIIT) has not been investigated. To explore this, we performed two different sport/exercise relevant high-intensity running protocols in five male sport team members using a repeated measures design of: (1) change of direction (COD) versus; (2) straight line (ST) running exercise with a wash-out period of at least 2 weeks between trials. Skeletal muscle biopsies collected from the vastus lateralis 30 min and 24 h post exercise, were assayed using 850K methylation arrays and a comparative analysis with recent (subject-unmatched) sprint and acute aerobic exercise meta-analysis transcriptomes was performed. Despite COD and ST exercise being matched for classically defined intensity measures (speed × distance and number of accelerations/decelerations), COD exercise elicited greater movement (GPS-Playerload), physiological (HR), metabolic (lactate) as well as central and peripheral (differential RPE) exertion measures compared with ST exercise, suggesting COD exercise evoked a higher exercise intensity. The exercise response alone across both conditions evoked extensive alterations in the methylome 30 min and 24 h post exercise, particularly in MAPK, AMPK and axon guidance pathways. COD evoked a considerably greater hypomethylated signature across the genome compared with ST exercise, particularly at 30 min post exercise, enriched in: Protein binding, MAPK, AMPK, insulin, and axon guidance pathways. Comparative methylome analysis with sprint running transcriptomes identified considerable overlap, with 49% of genes that were altered at the expression level also differentially methylated after COD exercise. After differential methylated region analysis, we observed that VEGFA and its downstream nuclear transcription factor, NR4A1 had enriched hypomethylation within their promoter regions. VEGFA and NR4A1 were also significantly upregulated in the sprint transcriptome and meta-analysis of exercise transcriptomes. We also confirmed increased gene expression of VEGFA, and considerably larger increases in the expression of canonical metabolic genes PPARGC1A (that encodes PGC1-α) and NR4A3 in COD vs. ST exercise. Overall, we demonstrate that increased physiological/metabolic load via COD exercise in human skeletal muscle evokes considerable epigenetic modifications that are associated with changes in expression of genes responsible for adaptation to exercise.

KW - AMPK

KW - change of direction

KW - DNA methylation

KW - MAPK

KW - NR4A1 (Nur77)

KW - NR4A3

KW - PGC1 alpha

KW - VEGF

U2 - 10.3389/fphys.2021.619447

DO - 10.3389/fphys.2021.619447

M3 - Journal article

C2 - 33679435

AN - SCOPUS:85102139596

VL - 12

JO - Frontiers in Physiology

JF - Frontiers in Physiology

SN - 1664-042X

M1 - 619447

ER -

ID: 259677573