Imputation of label-free quantitative mass spectrometry-based proteomics data using self-supervised deep learning

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

Imputation techniques provide means to replace missing measurements with a value and are used in almost all downstream analysis of mass spectrometry (MS) based proteomics data using label-free quantification (LFQ). Here we demonstrate how collaborative filtering, denoising autoencoders, and variational autoencoders can impute missing values in the context of LFQ at different levels. We applied our method, proteomics imputation modeling mass spectrometry (PIMMS), to an alcohol-related liver disease (ALD) cohort with blood plasma proteomics data available for 358 individuals. Removing 20 percent of the intensities we were able to recover 15 out of 17 significant abundant protein groups using PIMMS-VAE imputations. When analyzing the full dataset we identified 30 additional proteins (+13.2%) that were significantly differentially abundant across disease stages compared to no imputation and found that some of these were predictive of ALD progression in machine learning models. We, therefore, suggest the use of deep learning approaches for imputing missing values in MS-based proteomics on larger datasets and provide workflows for these.

Original languageEnglish
Article number5405
JournalNature Communications
Volume15
Number of pages15
ISSN2041-1723
DOIs
Publication statusPublished - 2024

Bibliographical note

© 2024. The Author(s).

    Research areas

  • Proteomics/methods, Deep Learning, Humans, Mass Spectrometry/methods, Supervised Machine Learning, Male

ID: 396732953