CaMKK2 is not involved in contraction-stimulated AMPK activation and glucose uptake in skeletal muscle

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

CaMKK2 is not involved in contraction-stimulated AMPK activation and glucose uptake in skeletal muscle. / Negoita, Florentina; Addinsall, Alex B.; Hellberg, Kristina; Bringas, Conchita Fraguas; Hafen, Paul S.; Sermersheim, Tyler J.; Agerholm, Marianne; Lewis, Christopher T.A.; Ahwazi, Danial; Ling, Naomi X.Y.; Larsen, Jeppe K.; Deshmukh, Atul S.; Hossain, Mohammad A.; Oakhill, Jonathan S.; Ochala, Julien; Brault, Jeffrey J.; Sankar, Uma; Drewry, David H.; Scott, John W.; Witczak, Carol A.; Sakamoto, Kei.

In: Molecular Metabolism, Vol. 75, 101761, 2023.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Negoita, F, Addinsall, AB, Hellberg, K, Bringas, CF, Hafen, PS, Sermersheim, TJ, Agerholm, M, Lewis, CTA, Ahwazi, D, Ling, NXY, Larsen, JK, Deshmukh, AS, Hossain, MA, Oakhill, JS, Ochala, J, Brault, JJ, Sankar, U, Drewry, DH, Scott, JW, Witczak, CA & Sakamoto, K 2023, 'CaMKK2 is not involved in contraction-stimulated AMPK activation and glucose uptake in skeletal muscle', Molecular Metabolism, vol. 75, 101761. https://doi.org/10.1016/j.molmet.2023.101761

APA

Negoita, F., Addinsall, A. B., Hellberg, K., Bringas, C. F., Hafen, P. S., Sermersheim, T. J., Agerholm, M., Lewis, C. T. A., Ahwazi, D., Ling, N. X. Y., Larsen, J. K., Deshmukh, A. S., Hossain, M. A., Oakhill, J. S., Ochala, J., Brault, J. J., Sankar, U., Drewry, D. H., Scott, J. W., ... Sakamoto, K. (2023). CaMKK2 is not involved in contraction-stimulated AMPK activation and glucose uptake in skeletal muscle. Molecular Metabolism, 75, [101761]. https://doi.org/10.1016/j.molmet.2023.101761

Vancouver

Negoita F, Addinsall AB, Hellberg K, Bringas CF, Hafen PS, Sermersheim TJ et al. CaMKK2 is not involved in contraction-stimulated AMPK activation and glucose uptake in skeletal muscle. Molecular Metabolism. 2023;75. 101761. https://doi.org/10.1016/j.molmet.2023.101761

Author

Negoita, Florentina ; Addinsall, Alex B. ; Hellberg, Kristina ; Bringas, Conchita Fraguas ; Hafen, Paul S. ; Sermersheim, Tyler J. ; Agerholm, Marianne ; Lewis, Christopher T.A. ; Ahwazi, Danial ; Ling, Naomi X.Y. ; Larsen, Jeppe K. ; Deshmukh, Atul S. ; Hossain, Mohammad A. ; Oakhill, Jonathan S. ; Ochala, Julien ; Brault, Jeffrey J. ; Sankar, Uma ; Drewry, David H. ; Scott, John W. ; Witczak, Carol A. ; Sakamoto, Kei. / CaMKK2 is not involved in contraction-stimulated AMPK activation and glucose uptake in skeletal muscle. In: Molecular Metabolism. 2023 ; Vol. 75.

Bibtex

@article{b34f4a5a83144d1581b22ee7424b8440,
title = "CaMKK2 is not involved in contraction-stimulated AMPK activation and glucose uptake in skeletal muscle",
abstract = "Objective: The AMP-activated protein kinase (AMPK) gets activated in response to energetic stress such as contractions and plays a vital role in regulating various metabolic processes such as insulin-independent glucose uptake in skeletal muscle. The main upstream kinase that activates AMPK through phosphorylation of α-AMPK Thr172 in skeletal muscle is LKB1, however some studies have suggested that Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) acts as an alternative kinase to activate AMPK. We aimed to establish whether CaMKK2 is involved in activation of AMPK and promotion of glucose uptake following contractions in skeletal muscle. Methods: A recently developed CaMKK2 inhibitor (SGC-CAMKK2-1) alongside a structurally related but inactive compound (SGC-CAMKK2-1N), as well as CaMKK2 knock-out (KO) mice were used. In vitro kinase inhibition selectivity and efficacy assays, as well as cellular inhibition efficacy analyses of CaMKK inhibitors (STO-609 and SGC-CAMKK2-1) were performed. Phosphorylation and activity of AMPK following contractions (ex vivo) in mouse skeletal muscles treated with/without CaMKK inhibitors or isolated from wild-type (WT)/CaMKK2 KO mice were assessed. Camkk2 mRNA in mouse tissues was measured by qPCR. CaMKK2 protein expression was assessed by immunoblotting with or without prior enrichment of calmodulin-binding proteins from skeletal muscle extracts, as well as by mass spectrometry-based proteomics of mouse skeletal muscle and C2C12 myotubes. Results: STO-609 and SGC-CAMKK2-1 were equally potent and effective in inhibiting CaMKK2 in cell-free and cell-based assays, but SGC-CAMKK2-1 was much more selective. Contraction-stimulated phosphorylation and activation of AMPK were not affected with CaMKK inhibitors or in CaMKK2 null muscles. Contraction-stimulated glucose uptake was comparable between WT and CaMKK2 KO muscle. Both CaMKK inhibitors (STO-609 and SGC-CAMKK2-1) and the inactive compound (SGC-CAMKK2-1N) significantly inhibited contraction-stimulated glucose uptake. SGC-CAMKK2-1 also inhibited glucose uptake induced by a pharmacological AMPK activator or insulin. Relatively low levels of Camkk2 mRNA were detected in mouse skeletal muscle, but neither CaMKK2 protein nor its derived peptides were detectable in mouse skeletal muscle tissue. Conclusions: We demonstrate that pharmacological inhibition or genetic loss of CaMKK2 does not affect contraction-stimulated AMPK phosphorylation and activation, as well as glucose uptake in skeletal muscle. Previously observed inhibitory effect of STO-609 on AMPK activity and glucose uptake is likely due to off-target effects. CaMKK2 protein is either absent from adult murine skeletal muscle or below the detection limit of currently available methods.",
keywords = "AMP-activated protein kinase, Ca/calmodulin dependent protein kinase kinase 2, Glucose uptake, SGC-CAMKK2-1, STO-609",
author = "Florentina Negoita and Addinsall, {Alex B.} and Kristina Hellberg and Bringas, {Conchita Fraguas} and Hafen, {Paul S.} and Sermersheim, {Tyler J.} and Marianne Agerholm and Lewis, {Christopher T.A.} and Danial Ahwazi and Ling, {Naomi X.Y.} and Larsen, {Jeppe K.} and Deshmukh, {Atul S.} and Hossain, {Mohammad A.} and Oakhill, {Jonathan S.} and Julien Ochala and Brault, {Jeffrey J.} and Uma Sankar and Drewry, {David H.} and Scott, {John W.} and Witczak, {Carol A.} and Kei Sakamoto",
note = "Publisher Copyright: {\textcopyright} 2023 The Author(s)",
year = "2023",
doi = "10.1016/j.molmet.2023.101761",
language = "English",
volume = "75",
journal = "Molecular Metabolism",
issn = "2212-8778",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - CaMKK2 is not involved in contraction-stimulated AMPK activation and glucose uptake in skeletal muscle

AU - Negoita, Florentina

AU - Addinsall, Alex B.

AU - Hellberg, Kristina

AU - Bringas, Conchita Fraguas

AU - Hafen, Paul S.

AU - Sermersheim, Tyler J.

AU - Agerholm, Marianne

AU - Lewis, Christopher T.A.

AU - Ahwazi, Danial

AU - Ling, Naomi X.Y.

AU - Larsen, Jeppe K.

AU - Deshmukh, Atul S.

AU - Hossain, Mohammad A.

AU - Oakhill, Jonathan S.

AU - Ochala, Julien

AU - Brault, Jeffrey J.

AU - Sankar, Uma

AU - Drewry, David H.

AU - Scott, John W.

AU - Witczak, Carol A.

AU - Sakamoto, Kei

N1 - Publisher Copyright: © 2023 The Author(s)

PY - 2023

Y1 - 2023

N2 - Objective: The AMP-activated protein kinase (AMPK) gets activated in response to energetic stress such as contractions and plays a vital role in regulating various metabolic processes such as insulin-independent glucose uptake in skeletal muscle. The main upstream kinase that activates AMPK through phosphorylation of α-AMPK Thr172 in skeletal muscle is LKB1, however some studies have suggested that Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) acts as an alternative kinase to activate AMPK. We aimed to establish whether CaMKK2 is involved in activation of AMPK and promotion of glucose uptake following contractions in skeletal muscle. Methods: A recently developed CaMKK2 inhibitor (SGC-CAMKK2-1) alongside a structurally related but inactive compound (SGC-CAMKK2-1N), as well as CaMKK2 knock-out (KO) mice were used. In vitro kinase inhibition selectivity and efficacy assays, as well as cellular inhibition efficacy analyses of CaMKK inhibitors (STO-609 and SGC-CAMKK2-1) were performed. Phosphorylation and activity of AMPK following contractions (ex vivo) in mouse skeletal muscles treated with/without CaMKK inhibitors or isolated from wild-type (WT)/CaMKK2 KO mice were assessed. Camkk2 mRNA in mouse tissues was measured by qPCR. CaMKK2 protein expression was assessed by immunoblotting with or without prior enrichment of calmodulin-binding proteins from skeletal muscle extracts, as well as by mass spectrometry-based proteomics of mouse skeletal muscle and C2C12 myotubes. Results: STO-609 and SGC-CAMKK2-1 were equally potent and effective in inhibiting CaMKK2 in cell-free and cell-based assays, but SGC-CAMKK2-1 was much more selective. Contraction-stimulated phosphorylation and activation of AMPK were not affected with CaMKK inhibitors or in CaMKK2 null muscles. Contraction-stimulated glucose uptake was comparable between WT and CaMKK2 KO muscle. Both CaMKK inhibitors (STO-609 and SGC-CAMKK2-1) and the inactive compound (SGC-CAMKK2-1N) significantly inhibited contraction-stimulated glucose uptake. SGC-CAMKK2-1 also inhibited glucose uptake induced by a pharmacological AMPK activator or insulin. Relatively low levels of Camkk2 mRNA were detected in mouse skeletal muscle, but neither CaMKK2 protein nor its derived peptides were detectable in mouse skeletal muscle tissue. Conclusions: We demonstrate that pharmacological inhibition or genetic loss of CaMKK2 does not affect contraction-stimulated AMPK phosphorylation and activation, as well as glucose uptake in skeletal muscle. Previously observed inhibitory effect of STO-609 on AMPK activity and glucose uptake is likely due to off-target effects. CaMKK2 protein is either absent from adult murine skeletal muscle or below the detection limit of currently available methods.

AB - Objective: The AMP-activated protein kinase (AMPK) gets activated in response to energetic stress such as contractions and plays a vital role in regulating various metabolic processes such as insulin-independent glucose uptake in skeletal muscle. The main upstream kinase that activates AMPK through phosphorylation of α-AMPK Thr172 in skeletal muscle is LKB1, however some studies have suggested that Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) acts as an alternative kinase to activate AMPK. We aimed to establish whether CaMKK2 is involved in activation of AMPK and promotion of glucose uptake following contractions in skeletal muscle. Methods: A recently developed CaMKK2 inhibitor (SGC-CAMKK2-1) alongside a structurally related but inactive compound (SGC-CAMKK2-1N), as well as CaMKK2 knock-out (KO) mice were used. In vitro kinase inhibition selectivity and efficacy assays, as well as cellular inhibition efficacy analyses of CaMKK inhibitors (STO-609 and SGC-CAMKK2-1) were performed. Phosphorylation and activity of AMPK following contractions (ex vivo) in mouse skeletal muscles treated with/without CaMKK inhibitors or isolated from wild-type (WT)/CaMKK2 KO mice were assessed. Camkk2 mRNA in mouse tissues was measured by qPCR. CaMKK2 protein expression was assessed by immunoblotting with or without prior enrichment of calmodulin-binding proteins from skeletal muscle extracts, as well as by mass spectrometry-based proteomics of mouse skeletal muscle and C2C12 myotubes. Results: STO-609 and SGC-CAMKK2-1 were equally potent and effective in inhibiting CaMKK2 in cell-free and cell-based assays, but SGC-CAMKK2-1 was much more selective. Contraction-stimulated phosphorylation and activation of AMPK were not affected with CaMKK inhibitors or in CaMKK2 null muscles. Contraction-stimulated glucose uptake was comparable between WT and CaMKK2 KO muscle. Both CaMKK inhibitors (STO-609 and SGC-CAMKK2-1) and the inactive compound (SGC-CAMKK2-1N) significantly inhibited contraction-stimulated glucose uptake. SGC-CAMKK2-1 also inhibited glucose uptake induced by a pharmacological AMPK activator or insulin. Relatively low levels of Camkk2 mRNA were detected in mouse skeletal muscle, but neither CaMKK2 protein nor its derived peptides were detectable in mouse skeletal muscle tissue. Conclusions: We demonstrate that pharmacological inhibition or genetic loss of CaMKK2 does not affect contraction-stimulated AMPK phosphorylation and activation, as well as glucose uptake in skeletal muscle. Previously observed inhibitory effect of STO-609 on AMPK activity and glucose uptake is likely due to off-target effects. CaMKK2 protein is either absent from adult murine skeletal muscle or below the detection limit of currently available methods.

KW - AMP-activated protein kinase

KW - Ca/calmodulin dependent protein kinase kinase 2

KW - Glucose uptake

KW - SGC-CAMKK2-1

KW - STO-609

U2 - 10.1016/j.molmet.2023.101761

DO - 10.1016/j.molmet.2023.101761

M3 - Journal article

C2 - 37380024

AN - SCOPUS:85164661974

VL - 75

JO - Molecular Metabolism

JF - Molecular Metabolism

SN - 2212-8778

M1 - 101761

ER -

ID: 360603357