Incretin and glucagon levels in adult offspring exposed to maternal diabetes in pregnancy

Research output: Contribution to journalJournal articleResearchpeer-review

CONTEXT: Fetal exposure to maternal diabetes is associated with increased risk of type 2 diabetes mellitus (T2DM) later in life. The pathogenesis of T2DM involves dysfunction of the incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), as well as hyperglucagonemia.

OBJECTIVE: Our aim was to investigate circulating plasma levels of GLP-1, GIP, and glucagon during the oral glucose tolerance test (OGTT) in adult offspring of women with diabetes in pregnancy.

DESIGN AND PARTICIPANTS: We conducted a follow-up study of 567 offspring, aged 18-27 years. We included two groups exposed to maternal diabetes in utero: offspring of women with diet-treated gestational diabetes mellitus (O-GDM; n = 163) or type 1 diabetes (O-T1DM; n = 146). Two reference groups were included: offspring of women with risk factors for GDM, but normoglycemia during pregnancy (O-NoGDM; n = 133) and offspring from the background population (O-BP; n = 125). The subjects underwent a 75-g OGTT with venous samples at 0, 30, and 120 minutes.

RESULTS: Fasting plasma levels of GLP-1 were lower in the two diabetes-exposed groups compared to O-BP (O-GDM, P = .040; O-T1DM, P = .008). Increasing maternal blood glucose during OGTT in pregnancy was associated with reduced postprandial suppression of glucagon in the offspring. Lower levels of GLP-1 and higher levels of glucagon during the OGTT were present in offspring characterized by overweight or prediabetes/T2DM at follow-up, irrespective of exposure status.

CONCLUSION: Lower levels of fasting GLP-1 and impaired glucagon suppression in adult offspring exposed to maternal diabetes during pregnancy are diabetogenic traits that may contribute to glucose intolerance in these persons, but further investigations are needed.

Original languageEnglish
JournalJournal of Clinical Endocrinology and Metabolism
Volume100
Issue number5
Pages (from-to)1967-75
Number of pages9
ISSN0021-972X
DOIs
Publication statusPublished - 2015

ID: 137419129