Absence of a memory effect for the insulinotropic action of glucagon-like peptide 1 (GLP-1) in healthy volunteers

Research output: Contribution to journalJournal articleResearchpeer-review

BACKGROUND/AIMS: The term memory effect refers to the phenomenon that B cell stimuli retain some of their insulinotropic effects after they have been removed. Memory effects exist for glucose and sulfonylureas. It is not known whether there is a B-cell memory for incretin hormones such as GLP-1.

SUBJECTS/METHODS: Eight healthy young volunteers were studied on four occasions in the fasting state. In one experiment, placebo was administered (a). in three more experiments (random order), synthetic GLP-1 (7 - 36 amide) at 1.2 pmol/kg/min was administered over a period of three hours. At 0 min, a bolus of glucose was injected intravenously (0.33 g/kg body weight). GLP-1 was infused from (b). - 60 to 120 min, (c). - 210 to - 30 min, or (d). - 300 to - 120 min. Glucose (glucose oxidase), insulin, C-peptide, GLP-1, and glucagon (immunoassays) were determined. Statistical analysis was carried out by ANOVA and appropriate post hoc tests.

RESULTS: GLP-1 plasma levels during the infusion periods were elevated to 89 +/- 9, 85 +/- 13, and 89 +/- 6 pmol/l (p < 0.0001 vs. placebo, 10 +/- 1 pmol/l). Glucose was eliminated faster (p < 0.0001), with an enhanced negative rebound (p = 0.014), and insulin and C-peptide increments were greater after intravenous glucose administration (p < 0.0001) if GLP-1 was administered during the injection of the glucose bolus, but not if GLP-1 had been administered until 120 or 30 min before the glucose load. There was a trend towards higher insulin concentrations (p = 0.056) five minutes after glucose with GLP-1 administered until - 30 min before the glucose load. Glucagon was suppressed by exogenous glucose, but increased significantly (p = 0.013) during the induction of reactive hypoglycemia after glucose injection during GLP-1 administration.

CONCLUSION: 1). No memory effect appears to exist for insulinotropic actions of GLP-1, in line with clinical data. 2). Reactive hypoglycemia causes a prompt rise in glucagon despite pharmacological circulating concentrations of GLP-1. 3). Similar studies should be performed in Type 2-diabetic patients, because exposure to GLP-1 might recruit dormant pancreatic B cells to become glucose-competent, and this might contribute to the overall antidiabetogenic effect of GLP-1 in such patients.

Original languageEnglish
Book seriesHormone and Metabolic Research. Supplement
Volume35
Issue number9
Pages (from-to)551-6
Number of pages6
ISSN0018-5043
DOIs
Publication statusPublished - Sep 2003

    Research areas

  • Adult, Analysis of Variance, Blood Glucose, C-Peptide, Fasting, Glucagon, Glucagon-Like Peptide 1, Humans, Insulin, Islets of Langerhans, Male, Peptides, Reference Values

ID: 132055857