Pyruvate dehydrogenase kinase regulates vascular inflammation in atherosclerosis and increases cardiovascular risk

Research output: Contribution to journalJournal articleResearchpeer-review


  • Fulltext

    Final published version, 83.4 MB, PDF document

  • Maria J Forteza
  • Martin Berg
  • Andreas Edsfeldt
  • Jangming Sun
  • Roland Baumgartner
  • Ilona Kareinen
  • Felipe Beccaria Casagrande
  • Ulf Hedin
  • Song Zhang
  • Ivan Vuckovic
  • Petras P Dzeja
  • Konstantinos A Polyzos
  • Anton Gisterå
  • Lea Dib
  • Joerg Herrmann
  • Claudia Monaco
  • Ljubica Matic
  • Isabel Gonçalves
  • Daniel F J Ketelhuth

AIMS: Recent studies have revealed a close connection between cellular metabolism and the chronic inflammatory process of atherosclerosis. While the link between systemic metabolism and atherosclerosis is well established, the implications of altered metabolism in the artery wall are less understood. Pyruvate dehydrogenase kinase (PDK)-dependent inhibition of pyruvate dehydrogenase (PDH) has been identified major metabolic step regulating inflammation. Whether the PDK/PDH axis plays role in vascular inflammation and atherosclerotic cardiovascular disease has never been studied.

METHODS AND RESULTS: Gene profiling of human atherosclerotic plaques revealed a strong correlation between PDK1 and PDK4 transcript levels and the expression of pro-inflammatory and destabilizing genes. Remarkably, the PDK1 and PDK4 expression correlated with a more vulnerable plaque phenotype, and PDK1 expression was found to predict future major adverse cardiovascular events. Using the small molecule PDK inhibitor dichloroacetate (DCA) that restores arterial PDH activity, we demonstrated that the PDK/PDH axis is a major immunometabolic pathway, regulating immune cell polarization, plaque development, and fibrous cap formation in Apoe-/- mice. Surprisingly, we discovered that DCA regulates succinate release and mitigates its GPR91-dependent signals promoting NLRP3 inflammasome activation and IL-1β secretion by macrophages in the plaque.

CONCLUSIONS: We have demonstrated for the first time that the PDK/PDH axis is associated with vascular inflammation in humans, and particularly that the PDK1 isozyme is associated with more severe disease and could predict secondary cardiovascular events. Moreover, we demonstrate that targeting the PDK/PDH axis with DCA skews the immune system, inhibits vascular inflammation and atherogenesis, and promotes plaque stability features in Apoe-/- mice. These results point toward a promising treatment to combat atherosclerosis.

Original languageEnglish
JournalCardiovascular Research
Issue number7
Pages (from-to)1524-1536
Number of pages13
Publication statusPublished - 2023

Bibliographical note

© The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology.

Number of downloads are based on statistics from Google Scholar and

No data available

ID: 342681520